$\qquad$

## Unit 10 Review

Using radians, find the following from the given graphs.
1)


Amplitude: 4
Period: $\pi / 2$
Number of Cycles (between $0-2 \pi$ ): 4
Domain: $(-\infty$,
Range: $[-4,4]$
Maximum (s) (between $0-\pi):(0,4),\left(\frac{\pi}{2}, 4\right)(\pi, 4)$
Minimums (s) (between $0-\pi):\left(\frac{\pi}{4},-4\right),\left(\frac{3 \pi}{4},-4\right)$
Zeros) (between 0- $\pi$ ): $(\pi / 8,0)(3 \pi / 8,0)(5 \pi / 8,0),(7 \pi / 8,0)$ Equation of the Graph:

$$
y=4 \cos (4 \theta)
$$

2) 



Amplitude: 2
Period: $2 \pi$
Number of Cycles (between 0-2 $\pi$ ): 1
Domain: $(-\infty, \infty)$
Range: $[-2,2]$
Maximum (s) (between $0-2 \pi):(\pi / 2,0)$
Minimums(s) (between $0-2 \pi):(3 \pi / 2,0)$
Zeros) (between $0-2 \pi):(0,0),(\pi, 0),(2 \pi, 0)$ Equation of the Graph:

$$
y=2 \sin \theta
$$

Using radians, find the amplitude and period of each function.
3) $y=\frac{1}{4} \cdot \cos \frac{\theta}{4}$
4) $y=3 \sin 2 \theta \quad$ Amp $: 3$
5) Sketch the graph for two cycles of the sine curve with an amplitude of 3 , a period of $\pi$, and $a<0$.


Using radians, find the amplitude and period of each function. Then graph.
7) $y=3 \sin \left(\theta+\frac{\pi}{4}\right) \quad \begin{aligned} & A: 3 \\ & P: 2 \pi\end{aligned}$

9) $y=\cos \theta+1$

A: 1 P: $2 \pi$

11) $y=4 \sin 2 \theta+2 \quad A: 4 \quad P: \pi$

8) $y=4 \cos \left(\theta+\frac{\pi}{2}\right) \quad \begin{aligned} & A: 4 \\ & P: 2 \pi\end{aligned}$

10) $y=1+2 \sin \theta \quad A: Z$ $p: 2 \pi$

12) $y=-2+2 \cos \left(\theta-\frac{\pi}{6}\right) \quad A: Z$
12) $y=-2+2 \cos \left(\theta-\frac{\pi}{6}\right) \quad p: 2 \pi$

13) $y=1+3 \cos \left(\theta+\frac{\pi}{2}\right)$
$A: 3$

14) $y=\frac{1}{2} \cdot \sin \left(\theta+\frac{3 \pi}{4}\right)-2$


Write an equation for each translation.
21) $y=\sin \theta ; 3$ units down; amplitude of 3 $y=3 \sin \theta-3$
23) $y=\cos \theta ; 1$ unit up, phase shift $\pi$ to the right, and an amplitude of 2.
$y=2 \cos (\theta-\pi)+1$
22) $y=\cos \theta ; 2$ units up; $\frac{2 \pi}{3}$ units to the right

$$
y=\cos \left(\theta-\frac{2 \pi}{3}\right)+2
$$

24) $y=\sin \theta ; 2$ units down, $\frac{3 \pi}{2}$ left, and $a<0$.

$$
y=-\sin \left(\theta+\frac{3 \pi}{2}\right)-2
$$

