Unit 10 Review

Using radians, find the following from the given graphs.

1)

2

Amplitude:

Period:

Number of Cycles (between $0-2\pi$):

Domain:

Range:

Maximum(s) (between $0-\pi$):

Minimums(s) (between $0-\pi$):

Zero(s) (between $0-\pi$):

Equation of the Graph:

Amplitude:

Period:

Number of Cycles (between $0-2\pi$):

Domain:

Range:

Maximum(s) (between 0-2 π):

Minimums(s) (between $0-2\pi$):

Zero(s) (between $0-2\pi$):

Equation of the Graph:

Using radians, find the amplitude and period of each function.

3)
$$y = \frac{1}{4} \cdot \cos \frac{\theta}{4}$$

4)
$$y = 3\sin 2\theta$$

5) Sketch the graph for two cycles of the sine curve with an amplitude of 3, a period of π , and $\alpha < 0$. Then write the equation.

6) Sketch the graph for two cycles of the cosine curve with an amplitude of 2, a period of $\frac{\pi}{2}$, and a > 0. Then write the equation.

Using radians, find the amplitude and period of each function. Then graph.

$$7) \ \ y = 3\sin\left(\theta + \frac{\pi}{4}\right)$$

9)
$$y = \cos \theta + 1$$

11)
$$y = 4\sin 2\theta + 2$$

8)
$$y = 4\cos\left(\theta + \frac{\pi}{2}\right)$$

10)
$$y = 1 + 2\sin \theta$$

$$12) \quad y = -2 + 2\cos\left(\theta - \frac{\pi}{6}\right)$$

13)
$$y = 1 + 3\cos\left(\theta + \frac{\pi}{2}\right)$$

14)
$$y = \frac{1}{2} \cdot \sin\left(\theta + \frac{3\pi}{4}\right) - 2$$

Write an equation for each translation.

21)
$$y = \sin \theta$$
; 3 units down; amplitude of 3

22)
$$y = \cos \theta$$
; 2 units up; $\frac{2\pi}{3}$ units to the right

23)
$$y = \cos \theta$$
; 1 unit up, phase shift π to the right, and an amplitude of 2.

24)
$$y = \sin \theta$$
; 2 units down, $\frac{3\pi}{2}$ left, and $a < 0$.