\qquad
\qquad

Unit 10 Review

Using radians, find the following from the given graphs.
1)

Amplitude:
Period:
Number of Cycles (between $0-2 \pi$):
Domain:
Range:
Maximum(s) (between 0- π):
Minimums(s) (between 0- π):
Zero(s) (between 0- π):
Equation of the Graph:
2)

Amplitude:
Period:
Number of Cycles (between 0-2 π):
Domain:
Range:
Maximum(s) (between $0-2 \pi$):
Minimums(s) (between 0-2 π):
Zero(s) (between 0-2 π):
Equation of the Graph:

Using radians, find the amplitude and period of each function.
3) $y=\frac{1}{4} \cdot \cos \frac{\theta}{4}$
4) $y=3 \sin 2 \theta$
5) Sketch the graph for two cycles of the sine curve with an amplitude of 3 , a period of π, and $a<0$. Then write the equation.

6) Sketch the graph for two cycles of the cosine curve with an amplitude of 2 , a period of $\frac{\pi}{2}$, and $a>0$. Then write the equation.

Using radians, find the amplitude and period of each function. Then graph.
7) $y=3 \sin \left(\theta+\frac{\pi}{4}\right)$

9) $y=\cos \theta+1$

11) $y=4 \sin 2 \theta+2$

8) $y=4 \cos \left(\theta+\frac{\pi}{2}\right)$

10) $y=1+2 \sin \theta$

12) $y=-2+2 \cos \left(\theta-\frac{\pi}{6}\right)$

13) $y=1+3 \cos \left(\theta+\frac{\pi}{2}\right)$

14) $y=\frac{1}{2} \cdot \sin \left(\theta+\frac{3 \pi}{4}\right)-2$

Write an equation for each translation.
21) $y=\sin \theta ; 3$ units down; amplitude of 3
22) $y=\cos \theta ; 2$ units up; $\frac{2 \pi}{3}$ units to the right
23) $y=\cos \theta ; 1$ unit up, phase shift π to the right, and an amplitude of 2 .

