\qquad
\qquad

9.4 HW: Area, Law of Sines, and Law of Cosines

1. Explain how you would choose between using the Law of Sines and the Law of Cosines when finding the measure of a missing side or angle? In other words, what information do you need for each law?
Sines: 2 sides \& opp angle Cosines: 3 sides
Cosines: 3 sides
2 angles $\&$ any side
2 sides ${ }^{k}$
included angle
Find each measurement indicated. Round all side lengths to the nearest hundredth and all angles to the nearest whole number.
2. Find AB

10 m
3. Find BC

4. Find BC

$$
37.38 \mathrm{yd}
$$

5. Find AB

6. Find $m \angle B$

7. Find $m \angle A$

8. Find $m \angle B$

9. Find $m \angle B$

10. Find $m \angle C$

11. Find BC

12. Find $m \angle A$

13. Find $m \angle C$

14. Find $m \angle B$

15. Find BC

16. Find AC

17. Find BC

18. Find $m \angle C$

19. Find $m \angle B$

20. Find $m \angle A$

21. A map shows the location of three cities that form a triangle with a 72° angle between two sides that represent distances 2.8 miles and 4.2 miles. What is the distance represented by the length of the third side? Hint: DRAW A PICTURE!

$$
4.3 \mathrm{mi}
$$

23. Does the Law of Cosines apply to a right triangle? That is, does $c^{2}=a^{2}+b^{2}-2 a b \cos C$ still work when $\angle C$ is a right angle? Justify your answer.
Yes \rightarrow explain

Find the area of each triangle. Round your answer to the nearest hundredth.
24.

$$
71.89 m^{2}
$$

26.

27.

28.

29.

