\qquad

9.3 HW: Radians

Convert each degree measure into radians. Leave your answer as a reduced fraction with π (NO FRACTIONS!)

1. -195°

-13π
 12

2. 275°
55π
36
3. -250°
$-\frac{25 \pi}{18}$

Convert each radian measure into degrees.
5. $-\frac{29 \pi}{36}$
-145°
6. $-\frac{7 \pi}{12}$
-105°
7. $\frac{\pi}{5}$
36°
8. $\frac{11 \pi}{9}$
220°

Find the exact value of each trigonometric function.
9. $\cos \frac{3 \pi}{2}$
10. $\tan -\frac{\pi}{4}$

-1
11. $\cos \frac{4 \pi}{3}$
$-\frac{1}{2}$
12. $\tan \frac{\pi}{4}$

1
13. $\sin -\pi$

0
14. $\cos -\frac{\pi}{3}$

$$
\frac{1}{2}
$$

15. $\cos 0$
16. $\cos \frac{3 \pi}{4}$
$-\frac{\sqrt{2}}{2}$
17. $\tan \frac{3 \pi}{2}$

DNE
18. $\tan \frac{\pi}{6}$
$\frac{\sqrt{3}}{3}$

Find the length of each arc. Leave your answer as an exact value in terms of π and rounded to the
nearest hundredth.
19.

20.

21.

22.

23. A geostationary satellite is positioned $35,000 \mathrm{~km}$ above Earth's surface. It takes 24 hours to complete one orbit. The radius of Earth is about $6,400 \mathrm{~km}$.
a. What distance does the satellite travel in 1 hr ? 2.5 hr ? 3 hr ? 25 hr ?

$$
\begin{array}{ll}
\text { lir: } 10,838.49 \mathrm{~km} & 3 \mathrm{hr}: 32,515.48 \mathrm{~km} \\
2.5 \mathrm{hr}: 27,096.24 \mathrm{~km} & 25 \mathrm{hr}: 270,962.37 \mathrm{~km}
\end{array}
$$

b. How long does it take the satellite to travel $200,000 \mathrm{~km}$?

18.45 hr

24. Suppose a windshield wiper has a length of 22 in . and rotates through an angle of 110°. What distance does the tip of the wiper travel as it moves across the windshield?

42.24 in

Fill out each unit circle. Try to do it from memory - there will be a quiz next time.

