5.1 Rational Graph Properties

Find the domain for each of the rational functions below.			
$y = \frac{x^2}{x^2 + 1}$	$y = \frac{(x+3)(x+2)}{(x+2)}$	$y = \frac{x+4}{x-2}$	
Excluded Values:	Excluded Values:	Excluded Values:	
None	X = -2	X = 2	
$(-\omega, \omega)$	Domain: (-\omega, -2)U(-2,\omega)	Domain: (-0,2)V(2,00)	
NO breaks	Removable Discontinuity	Non-Removable Discontinuity	
MO DICOLDS	factors cancel	Factor stays in the denominate	^
		1100 MONIONI MONO	سا
	-> hole in the	-> Vertical Asymp	70
-4 -3 -2 -1 1 2 3 4 x	-4 -3 -2 -1 1 2 3 4 x	-8 -6 -4 -2 -4 6 8 x -2 -4 -5 -5 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	

A discontinuity is basically A break in the domain graph

How do you find discontinuities?

find the excluded values (set denominator equal to 0)

Holes

ro find a hole (Removable discontinuity we need to make sure that the function is simplified, neaning we need to factor * (ance)

- The x-coordinate is the zero from any factor that cancelled out. (excluded value)
- To find the y-coordinate, we plug the x-coordinate into the Simplified function.

Ex:
$$f(x) = \frac{(x+5)(x+2)}{x^{42}}$$

 $f(x) = x+6, x \neq -2$
 $f(-2) = -2 + S = 3$
hole: $(-2/3)$

Vertical Asymptotes

Vertical asymptotes ($\frac{NON-YEMOVADL}{NON-YEMOVADL}$) appear in the denominator of a **simplified** rational function. These vertical lines are written in the form $X = \frac{1}{N}$, where k is a constant.

To find the location of the asymptote, find the x-values that make the denominator equal to
 _______.

that DON'T cancel on bottom

Ex:
$$f(x) = \frac{1}{x-2}$$

$$x-2=0$$

$$x = 2$$

Iorizontal (Behavioral) Asymptotes ()

o find a horizontal asymptote of a graph of a rational unction, compare the degree of the numerator (m) vith the degree of the denominator (n).

- If m < n (1000) N(100), the graph has horizontal asymptote at N = 0
- If m > n (Top New), the graph has no horizontal asymptote.
- If m = n (QUALLY WALLY), you get the horizontal asymptote by dividing the leading coefficient of the numerator (a) by the leading coefficient of the denominator (b).

State the domain for each function. State any discontinuities and identify any asymptotes.

A.
$$y = \frac{x+3}{x^2-4x+3} = \frac{\chi+3}{(\chi-1)(\chi-3)}$$
, $\chi \neq 1,3$

Domain:

$$(-\infty,1)V(1,3)V(3,\infty)$$

Holes:

NONE

x=1, x=3 (excluded values that didnit cancelout)

B.
$$y = \frac{x-5}{x^2+1}$$
 (No excluded values)

Domain:

Holes:

None

None

$$y=0$$

C.
$$y = \frac{x^2 + 3x - 4}{x + 4}$$

$$(x-4)(x+1) = x+1,x+4$$

Domain:

$$(-00, 4)V(4, 00)$$

Holes:
(Plug X=4 into simplified)
$$f(u) = 4+1=5$$
(4,5)

VA:

None

<u> HA:</u>

Nove

D.
$$y = (x^2 + 16)^{-1} = (x - 4)(x + 4) \times 7 \times 7 \times 4 = 4$$

Domain:

$$(-\infty, -4) \vee (+, 4) \vee (+, \infty)$$

Holes:

VA:

HA:

$$y = 0$$

$$\sum_{x \neq 1} y = \frac{x+1}{x^2 + 5x - 6} = \frac{1}{(x-6)(x+1)} = \frac{1}{x-6} = \frac{1}{(x-6)(x+1)} = \frac{1}{x-6} = \frac$$

$$(-\infty, -1) \cup (-1, 0) \cup (0, \infty)$$

$$\frac{\text{Holes:}}{X=-1}$$
 $f(-1) = \frac{1}{-1-6} = \frac{1}{-7}$ $(-1,-\frac{1}{7})$

<u>/A:</u>

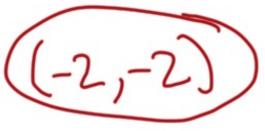
A A number can't be both a hole & a VA.

F.
$$y = \frac{x^2+2x}{x+2}$$
 $\times (\chi+2) = \chi$, $\chi = -2$

Domain:

$$(-00, -2) \cup (-2, 00)$$

$$f(-2) = -2$$



VA:

Nohe

HA:

None

To find *x*-intercepts:

set numerative of SIMPLIFIED function = 0

To find *y*-intercepts:

Plug 0 in for X. (constant of numerator) constant of denominator

Find all x and y-intercepts for each function.

G.
$$y = \frac{x-3}{x+5}$$

x-intercept(s):

$$\chi - 3 = 0 \longrightarrow (3,0)$$

y-intercept:

$$f(0) = \frac{0-3}{0+6}$$

$$(0,-3/5)$$

H.
$$y = \frac{x-3}{x^2+5x+6}$$

H.
$$y = \frac{x-3}{x^2+5x+6}$$

x-intercept(s): $\frac{3}{3} + \frac{2}{5}$ $(x+3)$

$$(0,-\frac{3}{6}) \rightarrow ((0,-\frac{1}{2}))$$

Find	By		
Discontinuities	values that make The denominator		
	equal to o		
	Removable Non-Removable		
	Factors that cancel Factors that stay		
	Factors that cancel Factors that stay —> hole —> Vertical Asymptote		
Holes	Plug X from cancelled factor into		
	Plug X from cancelled factor into simplified function to find y-		
Vertical Asymptotes	x of the non cancelled factor.		

ı

Horizontal Asymptote	Look at trightest exponent on top & bottom		
	Bottom Heavy	Equally Weighted	
	y=0	ratio of leading coefficients	
x-intercepts	set humerator = 0	(simplified)	
y-intercept	plug o in for x.		